Adaptive Deep Code Search

Chunyang Ling”

Key Laboratory of High Confidence Software
Technologies, Ministry of Education, China
Peking University
Beijing, China
lingcy @pku.edu.cn

Yanzhen Zou
Key Laboratory of High Confidence Software
Technologies, Ministry of Education, China
Peking University
Beijing, China
zouyz@pku.edu.cn

ABSTRACT

Searching code in a large-scale codebase using natural language
queries is a common practice during software development. Deep
learning-based code search methods demonstrate superior perfor-
mance if models are trained with large amount of text-code pairs.
However, few deep code search models can be easily transferred
from one codebase to another. It can be very costly to prepare
training data for a new codebase and re-train an appropriate deep
learning model. In this paper, we propose AdaCS, an adaptive deep
code search method that can be trained once and transferred to new
codebases. AdaCS decomposes the learning process into embedding
domain-specific words and matching general syntactic patterns.
Firstly, an unsupervised word embedding technique is used to con-
struct a matching matrix to represent the lexical similarities. Then,
a recurrent neural network is used to capture latent syntactic pat-
terns from these matching matrices in a supervised way. As the
supervised task learns general syntactic patterns that exist across
domains, AdaCS is transferable to new codebases. Experimental
results show that: when extended to new software projects never
seen in the training data, AdaCS is more robust and significantly
outperforms state-of-the-art deep code search methods.

CCS CONCEPTS

« Software and its engineering — Reusability.

KEYWORDS

code search, deep learning, domain adaption

“Both authors contributed equally.
t Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05....$15.00
https://doi.org/10.1145/3387904.3389278

Zeqi Lin"

Key Laboratory of High Confidence Software
Technologies, Ministry of Education, China
Peking University
Beijing, China
linzeqi@pku.edu.cn

Bing Xie
Key Laboratory of High Confidence Software
Technologies, Ministry of Education, China
Peking University
Beijing, China
xiebing@pku.edu.cn

public List<TrfvltBillInfoVo> getBillsByMonth(String accountInfo,
String date) throws Exception {
Map<String, Object> accountVo=TrfvltAppUtils. json2AccountMap(
accountInfo);

String carLicense=(String) accountVo.get("carLicense");
Map<String, Object> params = new HashMap<String, Object>();
params.put("carLicense", carlLicense);
params.put("yearMonth", date);
return billDao.getBillsByMonth(params);

Figure 1: A code snippet in an industrial codebase, contain-
ing domain-specific words such as “trfvit”, and “carLiscense”
that rarely appear in the Github training corpus

ACM Reference Format:

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2020. Adaptive Deep
Code Search. In 28th International Conference on Program Comprehension
(ICPC °20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3387904.3389278

1 INTRODUCTION

Code search is a common practice during software development
[40, 48]. To implement a certain functionality, developers usually
need to search and reuse previously written code by performing
natural language queries over a large-scale codebase. Recent years,
deep learning-based code search methods have been proposed and
achieved superior performances. For example, Gu et al.[14] pro-
posed DeepCS, a deep code search tool based on Recurrent Neural
Networks (RNN). Chen et al.[8] proposed BVAE, a deep code search
method based on Variational AutoEncoders (VAEs) [27, 45]. The
basic idea is to train a deep model with a large number of text-code
pairs, then use the model to search on the same codebase. The deep
code search model can better learn the semantic meanings so that
it improves the search accuracy of natrual language queries.
However, existing deep code search models perform badly when
applied to a new codebase. In practice, we train a deep code search
model with data collected from GitHub, then it can work well
on searching GitHub. Nevertheless, when we apply it to an real-
world industrial software codebase about smart city, the model




ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie

for each

Training Data

Applied in

Target Project

Figure 2: An example of domain-specific words and syntactic patterns in code search

suffers from the out-of-vocabulary (OOV) problem and results in a
low search accuracy. Figure 1 shows a code snippet in the target
industrial codebase. This code snippet contains several domain-
specific words that rarely appear in the training data, such as “trfvit”
(ak.a., traffic violation), “bill” and “carLiscense”. Thus, the deep code
search model fails to represent the semantic meanings properly
here.

For these deep code search methods, if we want to achieve supe-
rior performance on the real-world industrial codebase in a com-
pany, we have to prepare enough training data for the codebase and
train a specific search model for it. However, preparing training
data (i.e. text-code pairs) for deep models is very costly in regards
to time and money. There may be only a few codes commented
with proper natural language descriptions in the target codebase
(e.g., some private industrial codebases), so that it is quite difficult
to extract sufficient text-code pairs automatically.

In this paper, we propose AdaCS, an adaptive deep code search
method, which can be trained with data from one codebase (e.g.,
Github) and transferred to many other codebases (e.g., real-world
industrial codebases) easily. AdaCS learns domain-specific word
meanings and general syntactic patterns respectively. Firstly, an
unsupervised word embedding technique is utilized to construct
a matching matrix for each text-code pair, in which entries repre-
sent the similarities between words (i.e., word meanings). Then, a
recurrent neural network is utilized to capture the latent syntac-
tic patterns from these lexical matching matrices in a supervised
way. When it comes to a new software codebase, AdaCS learns the
domain-specific words from its code corpus, constructs a match-
ing matrix for each pair of natural language query and candidate
code snippet, and then use the trained recurrent neural network to
measure the degree of matching between the query and the code.

To evaluate the effectiveness of AdaCS, we perform the adaptive
code search task on a target Java codebase collected from 3 well-
known projects: Apache Lucene, Apache POI and JFreeChart. This
test codebase contains 1,606 query-code pairs. To simulate the
adaptive code search scenario, we first train the model with a large
corpus from GitHub consisting of 77,920 text-code pairs, and then
apply the model directly to search on the test codebase. Note that all
training text-code pairs related to the 3 target projects are filtered

out to ensure the adaptive experimental scene. Experimental results
show that AdaCS improves the top-5 hit rate of the adaptive code
search from 65.9% to 88.2% when compared against state-of-the-art
methods.

Contributions of this paper include:

o The proposal of AdaCS, a new deep code search method that
decomposes the learning process into embedding domain-
specific words and matching general syntactic patterns.

e We apply AdaCS to adaptive code search tasks in which it
can be trained once and transferred to new codebases easily.
To our knowledge, we are the first to apply transfer learning
more specifically unsupervised domain adaption to code
search.

e We conduct experiments on adaptive code search tasks and
the results demonstrate that AdaCS is more robust and out-
performs the state-of-the-art deep code search methods.

The rest of this paper is organized as follows. Section 2 describes the
motivation of this paper. Section 3 describes the details of AdaCS.
Section 4 presents the evaluation setup, and Section 5 presents
the evaluation results. Section 6 discusses related work. Section 7
concludes this paper.

2 MOTIVATION

This paper is motivated by a common observation that the match-
ing patterns between a natural language text and a code snippet
usually exist at different levels of granularity(e.g. from the lexical to
syntactic levels). Figure 2 demonstrates both the lexical and syntac-
tic matching patterns in text-code pairs and how a syntactic pattern
can work across codebase.

Consider the query “create listener for each button” and its rele-
vant code snippet in the training corpus. We denote this text-code
pair as pg. The matched words between text and code are linked via
colored lines. Solid lines represent identical matches(e.g., “listen-
ers” and “Listener”), and dotted lines represent similar matches(e.g.,
“create” and “add”). There is a syntactic pattern underlying this text-
code pair: the “x for each y” syntactic structure in natural language
text corresponds to the “for (...:...y ... ) {...x ... ] syntactic structure
in code.



Adaptive Deep Code Search

We can see that the word-level similarities are quite diverse
and domain-specific (e.g., “traffic violation”), while the syntax-level
patterns are more general and abstract. The other text-code pair
in the target codebase(i.e., “print traffic violations for each car”),
denoted as p1, contains some words that never appear in the training
corpus. However, p; shares the similar syntactic patterns with py, so
that the matching score of p; should be high. In fact, the word-level
similarities are mostly independent of the sentence-level matching
patterns in many cases.

We decompose the semantic similarity between a natural lan-
guage text and a code snippet into two factors:

e Domain-specific words meaning refers to the semantic
similarity between words. For example, “trfvit” is a syn-
onym of “traffic violation”. Each codebase may contain lots
of domain-specific words, which causes that words meaning
can hardly work across codebase.

o Syntactic pattern refers to sequential patterns in code and
natural language text. For example, “print traffic violations
for each car” and “print the car for each traffic violation”share
many common keywords, but their semantic meanings and
corresponding code snippets are very different. Most syntac-
tic patterns are universal across codebases so that we can
reuse these patterns when applied to a new target codebase.

Our main idea is to deal with domain-specific word mean-
ings and domain-adaptable syntactic patterns respectively.
That is to learn the syntactic patterns from training corpus sepa-
rately, and learn the domain-specific words meaning in an unsu-
pervised way for each codebase. Therefore, we can combine the
learned syntactic patterns with the domain words meaning and
transfer them to a new target codebase.

However, for existing deep code search methods, they learn word
meanings and syntactic patterns jointly during model training, so
that the learned models cannot be transferred from the training
corpus to a new type of codebase.

We formalize the code search problem as matching between a
natural language query ¢ and a code snippet c. Our goal is to define
the matching function f(q, ¢). Given a natural language query g,
we compute the score f(q,c) for each candidate code snippet c,
then the score is used to rank all these candidate code snippets in
descending order.

It has been widely recognized that making a good matching
decision requires of taking into account the rich interaction
structures in the text matching process [16, 42]. A large num-
ber of syntactic patterns can be mined from the interaction struc-
tures between the query and the document. We represent the in-
teraction structure of each text-code pair as a lexical matching
matrix. Figure 3 illustrates the lexical matching matrices of the
aforementioned text-code pairs pg (Figure 3b) and p; (Figure 3a).

In the interaction matrix M, each cell M; ; represents the lexical
similarity between the i-th word in ¢q and the j-th word in c. The
darker a cell is colored, the higher the corresponding lexical simi-
larity is. Although the word-level similarity is domain-specific, it
can be computed in an unsupervised way: for p, lexical similarity
is computed through performing word embedding technique [60]
on GitHub corpus; for p1, lexical similarity is computed through
performing word embedding technique on the target industrial

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

create .

listener .
for

each

button

for
jbutton
buttons .
add
action
listener

(a) Interactions between “create listener for each button”
and its relevant code snippet

print
traffic
violations
for
each
car -
52 58235885388 °
= E

license
liscence

(b) Interactions between “print traffic violations for each car”
and its relevant code snippet

Figure 3: Syntactic patterns lie in the interaction structures.
Each matrix stands for the interaction structure of a text-
code pair. Each matrix cell stands for the similarity between
two words.

corpus. Note that we do not need annotated text-code pairs for the
target codebase. We denote the lexical matching matrix of py and
p1 as My and My, respectively.

As the interaction structure of each text-code pair is represented
as a matrix, syntactic patterns are converted to matrix patterns. For
example, in Figure 3, we highlight matrix cells in red borders corre-
sponding to the aforementioned “x for each y” syntactic pattern. We
can see that My and M; contain a similar matrix matching pattern.
Therefore, we can learn such syntactic patterns from training data
like po, and then transfer these patterns to the target codebase like
p1. Now, f(q, c) is defined as:

f(g.¢) = score(¥(q, c)) (1)

, where ¥ maps the text-code pair to an interaction matrix un-
supervisedly, and then we use a supervised model to learn the
matching patterns to calculate f(q, c¢) score. When applied to a new
codebase, we construct matrices with all candidate code snippets
and the new natural language query, and rank the code snippets by
the predicted scores.



ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Natural Language Ranked Code
Query Snippets

ynput Output ‘

o
5
<
3 «
[=]
=3
g

Target eesssssssssssssssssssssse=s > Code Search Model

Codebase Unsupervised )
‘ p i
Learning

—] |

g Unsupervised . R
Training Learning Domain Words |-~ Syntactic Patterns
Codebase 1

Supervised Learning

Figure 4: An overview of the code search process based on
AdaCS$S

In our work, each word in code snippet ¢ is not represented as
a fixed vector, but represented dynamically by how it is similar
to words in natural language query g. Since the word meanings
can be learned in an unsupervised fashion, each word in the target
codebase can be represented properly, even if it never appear in the
training data. As a result, our approach can overcome the out-of-
vocabulary problem and tranferred easily to new codebases.

3 APPROACH

In this section, we present our proposed approach namely AdaCs,
which can be trained once and perform adaptive code search task on
new codebases. To ensure the model transferability, AdaCS learns
the abstract syntactic level patterns and the domain-specific lexical
level meanings separately.

Figure 4 gives an overview of the adaptive code search workflow
based on AdaCS. First, we use unsupervised learning based method
to learn the domain-specific words meaning for both the training
and target codebase. Next, we extract text-code pairs from the
training codebase and use supervised learning based method to
learn the general syntactic patterns. Finally, when the developer
inputs a natural language query, we use the trained model to search
on target codebase and then return the ranked code snippets as the
final result.

Figure 5 gives the deep model architecture of AdaCS. It can be
roughly divided into three parts: (1) learning domain words for each
codebase to obtain the word embeddings; (2) constructing a lexical
matching matrix for each text-code pair; (3) learning syntactic pat-
terns from these matrices with deep neural networks. After that,
AdaCSs predicts the score f(g, c) for each candidate code snippet c,
then uses such scores to re-rank all candidate code snippets. The
details of these three parts are introduced in the following sections.

3.1 Learning Domain Word Embeddings

For each codebase, we use unsupervised word embedding technique
to represent its domain-specific semantic meaning. [2][37]. Specifi-
cally, we utilize fastText[3]', a widely used word embedding tool

Thttps://fasttext.cc/

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie

S(go)
t

AR
( Linear

—— idf(v)

—t sim(wi, v)

wi

Query | W2 T sim(w2, va)

W &——tsim(wm vn)

A

Code Snippet ‘ Vi

V2 | v3

fastText

Codebase L Word Embedding

Figure 5: The model architecture of AdaCS

provided by Facebook, to encode each word w as a representation
vector d,,.

Word embedding is an unsupervised learning-based method,
which means that fastText requires a document corpus to train rep-
resentation vectors for words. For each software project, we build
the document corpus with code snippets (including API documen-
tation and code comments of them) in its codebase, following Ye et
al’s work[60]. Moreover, if the project has more textual resources
such as tutorials, issue reports and StackOverflow Q&A pairs, these
textual resources can be added into the document corpus to learn
better word representations.

We chose fastText to learn word representations, not classical
word embedding algorithms like word2vec[36] or GloVe[43], since
fastText can enrich word vectors with subword information. For
example, in fastText, “analyzer” will share some parameters with
“analytics” when training their word representations, since they
are similar in morphology. Therefore, word representations trained
by fastText are more reliable than those trained by classical word
embedding algorithms.

3.2 Constructing Lexical Matching Matrices

As discussed in Section 2, AdaCS represents interaction structures
of each text-code pair as a lexical matching matrix. Given a nat-
ural language text ¢ = (w1, w2, ws, ..., wy,) and a code snippet
¢ = (v1, V2, 03, ..., Uy), We construct a matrix M with m rows and n
columns, in which each entry M; ; represents the lexical similarity
between word w; and vj;:

M; ; = sim(wj, vj) (2)

We use a simple tokenizer to split a natural language text or
a code snippet into word sequences. It will decompose combined



Adaptive Deep Code Search

words (e.g., “StandardAnalyzer” will be decomposed to “standard”
and “analyzer”), and it will filter out all punctuation such as commas,
periods and braces. For example, as shown in Figure 3b, the code
snippet: “for (String s : carLiscenseList) { billDao.get TrfvitByLiscence(s);
...}’ will be tokenized into: (“for”, “string”, “s”, “car”, “liscense”, “list”,
“bill”, “dao”, “get”, “trfvlt”, “by”, “liscence”, “s”, ...)

The lexical similarity sim(w;, v;) is scored based on the word
embeddings obtained at previous stage. In particular, we define it
as the cosine similarity between a,,, and 070].:

ST =

Q. do;
sim(wj, vj) = ——L__ (3

llaw; Il - llaw, |l

, where || - || stands for the [ norm of a vector.

Based on the lexical matching matrix, we construct an interaction-

focused representation vector S, for each word v; in code snippet
c. This vector contains two parts of information:

(1) The j-th column in M, expressing the interaction struc-
tures between word v; and natural language query g. We
assume that the maximum length of a natural language query
will not exceed N (N is a hyper-parameter in AdaCS). Then,
we make:

- Mk] 0<k<m
k= > 4
ﬁv],k {0 m<k<N 4

(2) The IDF (Inverse Document Frequency) value of word v; in
the corpus, expressing the specificity of this word [51]. In
the matching process, it is helpful to deal with words with
different IDF values in different ways. Therefore, we add the
IDF value of v; as a dimension into the interaction-focused

representation vector ﬁvj:

DI
[{d|d € D Avj € d}|

fo, N = idf(vj) = log (5)

, where D stands for the aforementioned document corpus.
Through the above definitions, we can represent each text-code
pair p = (g,c) as Xp = (ﬁvl,ﬁvz,ﬁv3, ...,Evn ), which is a vector
sequence of length n. The i-th element in X, is a N + 1-dimensional
vector, standing for the interaction-focused representation of the
i-th word in code snippet c. In the next phase, X, will be used as
an input to learn cross-project syntactic patterns.

3.3 Learning Syntactic Patterns

Given a text-code pair p = (g, ¢), we construct a vector sequence
Xp for it (as presented in Section 3.2), then we develop an RNN
model to predict the f(g, c) value. This model should be trained
with lots of text-code pairs, and cross-project syntactic patterns
will be learned and encoded implicitly in model parameters. More
specifically, our method works as follows:

3.3.1 Text-code pair encoding. We first pass the vector sequence
Xp = (Boys Boys Poss - Pu, ) as the input to a long short-term mem-
ory network (LSTM) [20] and thus obtain:

{h1, h2, ..., hp} = LSTM(X,) (6)

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

, where h; is expected to encode useful context information in
subsequence (f,, Bu,, Puss --» Po;)- Therefore, information in X,

is encoded in a fixed-length vector—ﬁn.

3.3.2 Prediction. Our goal is to predict the f(g, ¢) value, which
stands for the matching degree between natural language text q
and code snippet c. To this end, we take h n as input, and use a linear
module Z to convert it to f(q, ¢):

f(gc)=Z"hy (7)

3.3.3 Training. We train all model parameters including the LSTM
module and 7 jointly. Our training data S consists of triples in the
form of (g, c*,¢7). In each triple, g is a natural language text; c*
is a positive code snippet that relevant to g; ¢~ is a negative code
snippet that is not relevant to q. The negative samples are randomly
drawn from the pool of code snippets except c*. For each training
example s = (g, c*,¢7) in S, the training objective is to minimize
the pair-wise hinge loss:

Ls = max(0,1 - f(g.¢") + f(q.¢7)) (®)

This loss encourages the model to produce a higher score of

f(g, ™) than the score of f(g,c™). Based on it, we define the aggre-
gated loss function Lg on dataset S as:

Ls= Y Ls )

seS

3.4 Transferring to Target Codebases

AdaCS is a domain-adaptive code search methods that can learn
from a single code corpus and be applied to different codebases
directly. When it comes to a new codebase, we do not need to
re-train the model since the syntactic patterns can work across
codebases but only substitute the domain-specific word embeddings
part.

As described in Section 3.1, we learn the word embedding for the
target code base in an unsupervised fashion. Then, we construct
the lexical matching matrices for the natural language query and
all candidate code snippets in the target codebase. In particular,
given a natural language query g, and all candidate code snippets
C ={c1.c2, ..., }, we compute the matching score by f(g, c/) for
all ¢ € C . Finally, we rank these code snippets in descending order,
and return the ranked list as the final search result.

4 EVALUATION SETUP

We evaluate AdaCS on the adaptive code search task: AdaCS is
trained with text-code pairs collected from GitHub, then it is tested
on a new codebase composed by three individual software projects—
Apache Lucene?, Apache POI® and JFreeChart?. In the training data,
all text-code pairs about these three target projects are filtered out
to ensure the adaptive nature of this evaluation.

We compare AdaCS with several state-of-the-art code search
methods to validate its effectiveness. Details of the evaluation setup
are presented as follows.

Zhttp://lucene.apache.org/
3https://poi.apache.org/
“http://www.jfree.org/jfreechart/



ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

14000 { 14000

12000 {

10000 {

8000 {

6000

Number of Samples
Number of Samples

4000

2000 {

o 100 300 00

012 34567 8 5111 BMI

Query Length

200
Code Length

(a) Text length distribution of (b) Code length distribution of
GitHub dataset GitHub dataset

140

3

Number of Samples

Number of Samples

0123 456 78 9101 12131815

Query Length

[ 100 200 300 400

Code Length

(c) Text length distribution of (d) Code length distribution of the
the test dataset test dataset

Figure 6: Text and code length distributions of our datasets

4.1 Research Questions
The evaluation investigates the following research questions:

e RQ1: Does AdaCS outperform the state-of-the-art deep code
search methods in adaptive code search?

e RQ2: Does AdaCS outperform the IR-based code search
methods in adaptive code search?

e RQ3: How does each module in AdaCS (e.g., fastText word
embeddings and the IDF value id f (-)) affect its effectiveness?

e RQ4: How efficient is AdaCS? How long does it take to train
the model, and how long does it take to make predictions?

4.2 Dataset

Our training data are collected from GitHub. Following Hu et al’s
work[22], we extract Java methods and their Javadoc comments
from GitHub (methods without Javadoc comments are omitted in
this evaluation). For each Java method ¢, we use the first sentence
appeared in its Javadoc comment as the natural language query
q since it typically describes the functionality of the Java method
(according to Javadoc guidance®).

We further clean up these (g, ¢) pairs using the following rules:

o (g, c) will be filtered out if the code snippet c invokes any
API in Apache Lucene, Apache POI or Jfreechart, which are
target projects for testing in our evaluation.

e (g, c) will be filtered out if length of the query g is longer
than N (we set N = 15), the code snippet ¢ contains less than
3 statements, or the code snippet ¢ contains more than 400
words.

o (g, c) will be filtered out if the code snippet c is a construc-
tor, an overridden method, a getter/setter method or a test
method.

Shttp://www.oracle.com/technetwork/articles/java/index- 137868.html

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie

Table 1: Basic statistics of the test data

Unique Unique

Methods WI:)I?ds \;2?; NL Code

Words  Words

Lucene 563 3,488 59,874 889 1,772

POI 707 4,549 82,259 878 2,083
JFreeChart 336 1,961 41,522 430 926

Total 1,606 9,998 1,83,655 1,457 3,075

Table 2: Some sampled queries from test dataset.

Project
Lucene

Natural Language Queries

creates a span query from the tokenstream

load a stemmer table from an inputstream

POI create a new comment at located cell address
change the type of the text

JFreeChart | draws a section label on the right of the pie chart
create a scatter plot with default settings

Finally, we get 77,920 text-code pairs which are positive samples
(g, c+). For each (g, c+), we randomly select n negative samples
from the pool of code snippets except ¢+, where n is set to be 20
empirically in this work. Thus, we obtain 77, 920 X 20 triples in the
form of (g, ¢+, c—). This dataset contains 16,551 unique words in
natural language queries and 25,459 unique words in code snippets.
Figure 6a and Figure 6b gives the text length and code length dis-
tribution respectively. We randomly select 60% of the triples for
training (S), 20% of the triples for validation (S’), and the rest 20%
for testing in a secondary experiment (S”’).

Our test dataset consists of 3 parts of code according to related
projects, which are: Apache Lucene (version 7.0.0), Apache POI
(version 4.1.0) and JFreeChart (version 1.0.19). To guarantee the
quality of natural language queries, we use a few heuristic rules(e.g.,
should contain verb and noun phrases)to filter the inappropriate
descriptions(e.g., “This method is not thread-safe.”). Finally, we get
1,606 (g, c) text-code pairs in total. For each natural language query
q, we treat all these 1,606 code snippets as candidates and our goal
is to rank the ground truth c as higher as possible.

Table 1 gives the basic statistics of the test dataset, and Table 2
shows some sampled queries from the test dataset. Figure 6¢ gives
the text length distribution of this dataset, and Figure 6d gives the
code length distribution of this dataset.

4.3 Comparison Methods

We compare the effectiveness of AdaCS with 5 existing code search
methods, and these methods can be categorized into two groups.

4.3.1 IR-based Methods. For IR-based code search methods, the
ordering of words usually has no effect on the search process. they
can work across domains and do not need labelled training data.
Since our dataset only contains text-code pairs, we do not compare
with some IR-based methods requiring auxiliary information(e.g.,
posts from StackOverflow).



Adaptive Deep Code Search

e Baseline: we take a simple information retrieval system as
our baseline method, in which the matching degree between
a natural language query and a code snippet is measured
by the cosine similarity of their TF-IDF vectors. We use
Gensim®, a Python library for text processing to implement
this baseline method.

o Skip-gram: Ye et al. [60] proposed a word embedding-based
method to measure the matching degree between a natural
language text and a code snippet. We apply it in the code
search task and call this Skip-gram, as this method utilizes the
classical skip-gram model [36] to learn word embeddings.
As the authors didn’t open source it, we reproduced this
method based on the paper.

e CodeHow: CodeHow is a code search method proposed by
Lv et al. [34]. It first identifies some potential APIs that may
be related to a natural language query, then use the Extended
Boolean Model to apply the information to the code search
process. As the authors didn’t open source it, we reproduced
this method based on the paper.

4.3.2 Deep Learning-based Methods. For deep learning-based code
search methods, they perform well if models are trained with a
large amount of proper text-code pairs, but they will suffer from
out-of-vocabulary(OOV) problem when applied to new codebases.

e DeepCS: DeepCS’ is a deep learning-based code search
method proposed by Gu et al. [14]. It is a typical represen-
tation focused deep code search method (while AdaCS is
a interaction focused deep code search method): natural
language queries and code snippets are encoded as real vec-
tors in a unified space using deep neural networks, then
the matching degree between a query and a code snippet is
measured by the distance of the vectors.

e BVAE: BVAE 8 proposed by Chen et al. [8] is another rep-
resentation based deep code search method. It utilizes two
Variational AutoEncoders (VAEs) to better encode natural
language queries and code snippets.

Moreover, to answer RQ3 (how each module in AdaCS affects
its effectiveness), we compare AdaCS with some of its variants as
follows:

o AdaCS-IND: in this variant, we use indicator function to
calculate sim(wj, vj), i.e., we produce either 1 or 0 to indicate
whether two words are identical after they are stemmed:

1 stem(w;) = stem(v;)

sim(wj, vj) = { (10)

0 otherwise
This variant is used to validate that it is important to capture
the semantic matching between similar but not identical
words using word embeddings from unsupervised learning
in AdaCS.

e AdaCS-nolIDF: In Ehis variant, we remove the IDF value
idf(vj) from from fy,;. This variant is used to validate that
it is important to incorporate the specificity of words into
AdaCs.

Chttps://pypi.org/project/gensim/
"https://github.com/guxd/deep-code-search
8https://github.com/betterenvi/ret-sum

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Table 3: Comparison of Hit@K (K = 1, 2, 3,5) and MRR scores
on the adaptive code search task

H@l H@2 H@3 H@5 H@10 | MRR
Baseline 0.279 0.405 0.467 0.541 0.661 | 0.407
Skip-gram | 0.322 0.415 0.458 0.552  0.696 | 0.435
CodeHow | 0.377 0.472 0.509 0.567 0.698 | 0.479
DeepCS 0.268 0.366 0.430 0.523 0.659 | 0.386
BVAE 0.268 0.366 0.430 0.523 0.709 | 0.397
AdaCS 0.486 0.598 0.675 0.772 0.885 | 0.621

4.4 Performance Metrics

Our evaluation task is a navigational search task. In other words,
each test query corresponds to one and only one ground-truth
relevant code snippet. Therefore, we use two common metrics for
navigational search as the performance metrics in our evaluation:
e Hit@K, which considers whether the ground truth rele-
vant code snippet of each query is ranked within the top K
positions of the result list:

I{quGQ/\Rg(c(cqlq)SK}l (11)

, where Q is the set of all test queries, and Rank(cq|q) stands
for where the ground truth relevant code snippet c4 of g is
ranked in the search result. We report the Hit@K results at
K=1{1,23,..,10}.

e MRR (Mean Reciprocal Rank), i.e., the average of the recip-
rocal ranks of the ground-truth relevant code snippets:

Hit@K =

1
Z‘IEQ Rank(cqlq)
1Ol

4.5 Implementation Details

MRR = (12)

We implement AdaCS using PyTorch®, an open-source deep learn-
ing framework, and the URL of our source code is masked now for
double-blind review.

We make the LSTM module (presented in Equation 6) a 2-layer
LSTM. The parameters are set as a result of experience. The hidden
dimension of LSTM is set to 64, and the dropout rate is set to 5%. For
training our AdaCS model, we use the ADAM[26] optimizer with
learning rate 0.005 and batch size 64. Code, data, and experiments
for this paper are available on GitHub.

5 EVALUATION RESULTS

In this section, we show the evaluation results and answer the
research questions presented in Section 4.1 empirically.

5.1 Effectiveness (RQ1 & RQ2)

RQ1 and RQ2 aim to investigate whether AdaCS outperforms the
state-of-the-art deep code search methods and IR-based code search
methods in adaptive code search. We report our main results in
Table 3.

AdaCS outperforms existing code search methods by a large mar-
gin. It obtains a test MRR score of 0.621, which is much better than

“https://pytorch.org/
WOhttps://github.com/laurence-ling/drm_codesearch



ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Hit@K

041 BT — AdaCs

s, DeepCS
9 -~ BVAE - CodeHow
03 47
- = Word2Vec Baseline

0.2

1 2 3 4 5 KE 7 8 9 10

(a) Comparison results on the adaptive code search task

A - —AdaCs DeepCS
ol
03 ,’,; < -— BVAE -=- CodeHow
- - Word2Vec Baseline

0.2 1 T T T T T T T T
1 2 3 4 5 6 7 8 9 10

K

(b) Comparison results on the non-adaptive code search task

Figure 7: Comparison of Hit@K (K = 1,2, ...,10) scores: (1)
AdaCS outperforms the state-of-the-art methods in adaptive
code search task, and achieves competitive results in non-
adaptive search task; (2) Deep code search methods (DeepCS
and BVAE) work well on the non-adaptive code search task,
but their effectiveness drops a lot on the adaptive search
task, since they suffer from the OOV problem caused by
domain-specific words.

that of Baseline (0.407), Skip-gram (0.435), CodeHow(0.479), DeepCS
(0.386) and BVAE (0.39). In terms of Hit@K, AdaCS improves the
state-of-the-art Hit@5 score from 56.7% (obtained by CodeHow) to
77.2%. For 48.6%/67.5%/77.2%/88.5% of the test queries, the relevant
code snippets can be found within the top 1/3/5/10 returned results.
Figure 7a gives the Hit@K curves of AdaCS and those existing code
search results. These results show that AdaCS leads to much better
results than existing deep learning-based methods and IR-based
methods on the adaptive code search task.

As Table 3 and Figure 7a shows, the state-of-the-art deep code
search methods (i.e., DeepCS and BVAE) do not perform well on
the adaptive code search task. As a comparison, we test AdaCS and
those comparison methods on a non-adaptive code search task(i.e.,
the model is both trained and tested on the same dataset), and
the results are shown in Figure 7b. In this secondary experiment,
we use the remaining 20% of GitHub data for testing except the

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie

Table 4: Comparison of Hit@K (K = 1, 2, 3,5) and MRR scores
of AdaCS and its variants

H@l H@2 H@3 H@5 H@10 | MRR
AdaCS | 0.486 0.598 0.675 0.772 0.885 | 0.621
AdaCS 0.402 0.517 0.602 0.696 0.809 0.583
IND . X . . . .
AdaCS
0.435 0.549 0.630 0.732 0.848 0.546
_nolIDF
08
0.3 4
0.7 4
w 06 1
@
T os |
0.4
/. —AdaCs AdaCS_IND
03 4,/
.- AdaCS_noIDF -.-Baseline
02 , : , , ; : . .

Figure 8: Comparison of Hit@K (K = 1,2,...,10) scores of
AdaCS and its variants

60% for training data and the 20% for validation data. We can find
that AdaCS also achieves competitive results in this task. Note that
the state-of-the-art deep code search methods learn each word’s
embedding as model parameters in a supervised fashion, while
AdaCS only learns them unsupervisedly.

As is shown in Figure 7b, although the state-of-the-art deep code
search methods work well on the non-adaptive code search task,
their effectiveness drops dramatically in the adaptive code search
scene(as shown in Figure 7a). This is mainly because that they suffer
from the OOV problem caused by domain-specific words in target
codebase (i.e., Apache Lucene, Apache POI and JFreeChart).

In summary, AdaCS, a novel interaction-based adaptive deep
code search method, outperforms the state-of-the art methods
in adaptive code search task and also achieves competitive
results in non-adaptive task.

5.2 Module Utility (RQ3)

RQ3 aims to investigate how each module in AdaCS affects its
effectiveness. To answer this research question, we compare AdaCS
against some of its variants:

e AdaCS-IND, in which we use indicator function to calculate
word similarity;
° édaCS—noIDF, in which the IDF values are removed from
ﬁvﬁ
The experimental results are shown in Table 4 , and Figure 8
gives the detailed Hit@K (K = 1, 2, ..., 10) curve of the results. We



Adaptive Deep Code Search

can find that AdaCS obtain the best results, whether in terms of
Hit@K or MRR metrics. If the IDF values are removed out (i.e.,
AdaCS-noIDF), then the MRR drops from 0.621 to 0.583, which
demostrates that the IDF values in [)’; ,; carry useful information for
understanding the semantics. At same time, the MRR also drops if
we do not use unsupervised learned word embeddings to calculate
the similarity but use exact matches.

Therefore, we can conclude that: all the modules including
fastText-based word similarities and the IDF values are help-
ful to improve the effectiveness of AdaCS.

5.3 Efficiency (RQ4)

RQ4 aims to investigate the time efficiency of AdaCS. More specif-
ically, we focus on how long it takes to train the model and how
long it takes to predict the f(g, c) value of each (g, c) pair.

To answer this research question, we record the time spent on
training and predicting during evaluation. Our experiments are
all conducted on a workstation with a 2.9GHz 8 Core CPU and a
NVIDIA GTX1080TI GPU.

5.3.1 Training efficiency. In our training process, each training
iteration took about 30 minutes in average. The validation result
reached its local optimal at the 9th iteration, and tended to stable
afterwards.

5.3.2 Prediction efficiency. For each (g, c¢) pair, AdaCS took 1.29
milliseconds to predict the f(q, c) value. Therefore, the response
time of each query will be 1.29 seconds if we take 1,000 candidate
code snippets in the code search engine. In order to reduce the
number of candidates, we use a text retrieval system to filter out
some code snippets before the model prediction. In the text retrieval
step, we simply use the vector space model (VSM) [47] based cosine
similarity between the code snippets and the natural language
query g, and the top-k scored code snippets are kept as “candidate
code snippets”. Thus, we can adjust the value of k (e.g., set it to
1,000) so that the online computation time of AdaCS can be reduced.
Therefore,this time efficiency can basically meet the needs of
real-time search, though it is slower than existing code search
methods.

5.4 Threats to Validity

The threat to construct validity is that the target projects (ie.,
Apache Lucene, Apache POI and JFreeChart) in this evaluation
are not actual standalone industrial software projects, but widely-
used open source software projects. To reduce the threat, we isolate
the target projects from the training data, and simulate the adaptive
code search scene. As described in section 4, for any (g, ¢) pair from
GitHub, it will not be added to the training data if the code snippet
c invokes any API in any of the three target projects. Once data
from a completely different domain is available, we will further
validate our method.

The threat to internal validity is that our evaluation uses Javadoc
descriptions as code search queries for testing. It is likely that such
test queries are different from queries introduced by developers in
real code search scenarios. To reduce the threat, we cleaned up these
test queries carefully. We use the heuristics rules to filtered out a
lot of inappropriate queries from the test data to ensure that our

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

test queries are as close as possible to the real-world code search
queries. As is shown in Table 2, the final test queries are good
for evaluating the effectiveness of code search methods. We will
evaluate our model in other datasets that contain actual natural
language search queries in the future.

The threat to external validity is that AdaCS is currently tested
on Java programs. However, AdaCS makes few assumptions on
the underlying language and only requires the training text-code
pairs to learn the syntactic patterns. Generalizing AdaCS to other
languages will be our future work.

6 RELATED WORK

In this section, we present and discuss related work of this paper
mainly from three aspects: deep learning-based code search, IR-
based code search and transfer learning.

6.1 Deep Learning-based Code Search

Code search has been widely studied in literature[5, 25, 49]. Re-
cently, deep learning-based methods are also applied to code search
[14, 15]. Typically, DeepCS [14] uses CODEnn that learns a unified
vector representation of both source code and natural language
queries so that code snippets semantically related to a query can
be retrieved according to their vectors. Chen et al. [8] proposed
BVAE that is composed by two Variational AutoEncoders (VAEs) to
model source code and natural language respectively. Both VAEs
are trained jointly to capture the closeness between the latent vari-
ables of the code and the description. Jiang et al. [24] proposed
ROSF that uses supervised learning to re-rank the candidate results.
Richardson et al. [46] proposed Assistant that learnes a translation
model from amount of code-text pairs. Word embedding technique
is also used in some research work [10, 18]. Ye et al. [60] proposed a
word emmbedding-based method to measure the matching degree
between natural language text and source code. API2Vec [39] used
the CBOW model to learn API embeddings from API sequences ex-
tracted from source code, and verified that the vectors can represent
similar semantics of APIs. BIKER [23] extracted similar questions
and APIs from StackOverflow and used word embeddings to calcu-
late the text similarity.

Different from existing deep code search methods, AdaCS learns
domain-specific word embeddings and general syntactic patterns
respectively. Leveraging the interaction matrix to learn the syntactic
patterns has been used in text matching methods, which is called
interaction-focused deep text matching[16].

The interaction-focused methods first build local interactions be-
tween the query and the document, and then use neural networks to
learn hierarchical matching patterns. For example, ARC-II[21] and
MatchPyramid[42] build hierarchical CNNs on the similarity ma-
trix of two texts’ word embeddings. They can successfully identify
salient signals such as n-gram and n-term matchings. DRMM[16]
uses histogram mapping, a feed forward matching network, and a
term gating network to summarize relevance matching factors. K-
NRM[57] uses a new kernel-pooling technique to extract multi-level
soft-match features from the translation matrix, and a learning-to-
rank layer that combines those features into the final ranking score.
Conv-KNRM[9] adds convolution layers over K-NRM and outper-
forms prior neural methods and feature-based methods.



ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Different form deep text matching methods which focuses on
two texts, AdaCS measure the similarity between texts and code
snippets, and utilizes the unsupervised word embedding to rep-
resent the meanings of so many domain-specific words in code
snippets.

6.2 IR-based Code Search

Many IR-based code search methods were proposed [38], which
are mainly based on the text similarity between natural language
queries and code snippets. Here are some typical IR-based code
search work: Bajracharya et al. [1] proposed Sourcerer, an internet-
scale code search engine that uses Lucene to build index on the
parsed source code and provides keyword search service for devel-
opers. Chatterjee et al. [7] proposed SNIFF, a code search tool that
annotates each API with its related documentation first, and then
perform the natural language based code search on the annotated
code snippets.

To deal with the lexical-gap between natural language and source
code, different approaches were proposed such as query reformula-
tion [17] and query expansion [19, 28, 53, 58]. Lu et al. [33] proposed
to extend the query with synonyms from WordNet. Lv et al. [34]
proposed CodeHow, a code search engine that first identifies some
potential APIs that may be related to the question, and then use
the Extended Boolean Model to incorporate the APIs’ information
during the code search process. Wang et al. [56] proposed to use
feedback information from users to reformulate the query. Recently,
Sivaraman et al. [50] proposed ALICE, a interactive code search
tool that uses active inductive logic programming to interact with
users and infers a new logic query that separates positive examples
from negative examples.

Meanwhile, some relationship aware methods were proposed to
leverage the structural information of source code. For example,
Mcmillan et al. [35] proposed Portfolio that organizes source code
as directed graph and uses PageRank and Spread Activation Net-
work(SAN) to return the top related nodes in the graph as answers.
Chan et al. [6] returns a connected subgraph so that it can present
the relationships between these API nodes clearly. Li et al. [29]
proposed RACS also proposed a relationship aware code search
approach for JavaScript frameworks.

IR-based methods are unsupervised but the accuracy is not satisi-
fying, while DL-based methods improve the accuracy but cannot
be adopted to different codebases. Our approach aims to perform
adaptive code search and keep high accuracy at the same time.

6.3 Transfer Learning

Transfer learning aimed at transferring knowledge from a source
domain to a target domain has been extensively studied in machine
learning (e.g., [41] for an overview). With the surge of deep learning,
various neural network based transfer learning methods[52] have
been proposed for different fields including computer vision[31],
speech recognition[55] and NLP[12, 59]. Based on the data require-
ments, existing transfer learning methods can be generally cat-
egorized into two groups. The first group of work assumes that
we have labeled data from the source domain and also a little la-
beled data from the target domain. A representative and widely
used framework is the fine-tuning approaches, which initialize the

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie

model parameters from a well-trained model on the source domain
and then fine tune the parameters using the labeled data in the
target domain. The second group of work assumes that we only
have labeled data from the source domain but may also have some
unlabeled data from the target domain. Since we do not have labeled
text-code pairs for the new codebase, our work falls to the latter
case, which is also called unsupervised domain adaptation.

For unsupervised domain adaption, instance-based transfer learn-
ing methods re-weight instances from the source domain against
the distribution of the target domain[13]. However, it is hard to
compute the importance weight without labeled data in the target
domain and may cause negative results[44]. Another group of work
belong to feature-based transfer learning, which map instances of
the source and target domains to a shared feature space and reduce
the cross-domain discrepancy in the new space[11]. The basic idea
is to learn domain-invariant representations, rather than domain-
specific ones. Different deep neural networks are used in these
work to learn intermediate feature representations, such as residual
transfer networks[32] and generative adversarial networks[4]. A
typical framework is to use a shared neural network to learn the in-
variant feature space[59], while another representative framework
is to use a shared network to learn the shared feature space and
two domain-specific network for the specific feature space[30].

Our work belongs to the category of feature-based transfer learn-
ing, but there is no out-of-shelf methods that can be used in the
code search scenario directly. To our knowledge, AdaCS is the first
work to apply unsupervised domain adaption to code search. AdaCS
firstly use unsupervised word embedding technique to construct a
matching matrix between queries and code snippets, and then use
a RNN to learn the cross-domain syntactic patterns. Thus, AdaCS
can learn from data in the source domain and perform well in the
target domain.

7 CONCLUSION

In this paper, we propose AdaCS, an adaptive deep code search
method. It can be trained in one codebase and applied to another
one easily, thus solving the problem that existing deep code search
methods require a lot of time and effort on collecting domain-
specific training data. To ensure the transferability, AdaCS learns
word meanings and syntactic patterns respectively in the learning
process. Firstly, an unsupervised word embedding technique is uti-
lized to construct a matching matrix for each text-code pair. Then,
a recurrent neural network is utilized to capture latent syntactic
patterns from these matching matrices in a supervised way. Experi-
mental results show that AdaCS outperforms the state-of-the-art
methods when adapting to a new codebase. For future work, we
will further improve the time efficiency of AdaCS by using parallel
deep sequence encoders (e.g., Transformer [54]) instead of RNN to
learn syntactic patterns. Moreover, we will further apply AdaCS to
more programming languages and wider test datasets.

ACKNOWLEDGMENT
The work was supported by the National Natural Science Fund for
Distinguished Young Scholars of China under Grant No. 61525201,

and the General Program of National Natural Science Foundation
of China under Grant No. 61972006.



Adaptive Deep Code Search

REFERENCES

(1]

&

[10]

[11

[12]

[15]

[16]

[17]

(18]

[19]

[20]

[21

[22]

[23

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. 2006. Sourcerer: a search engine for open source
code supporting structure-based search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications.
ACM, 681-682.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. Journal of machine learning research 3, Feb
(2003), 1137-1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the Association
for Computational Linguistics 5 (2017), 135-146.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and
Dilip Krishnan. 2017. Unsupervised pixel-level domain adaptation with generative
adversarial networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 3722-3731.

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010.
Example-centric programming: integrating web search into the development
environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, 513-522.

Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API
subgraph via text phrases. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. ACM, 10.

Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. 2009. Sniff: A search en-
gine for java using free-form queries. In International Conference on Fundamental
Approaches to Software Engineering. Springer, 385-400.

Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and
summarization of source code. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 826-831.

Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of
the eleventh ACM international conference on web search and data mining. ACM,
126-134.

Daniel DeFreez, Aditya V Thakur, and Cindy Rubio-Gonzalez. 2018. Path-based
function embedding and its application to specification mining. arXiv preprint
arXiv:1802.07779 (2018).

Yaroslav Ganin and Victor Lempitsky. 2014. Unsupervised domain adaptation by
backpropagation. arXiv preprint arXiv:1409.7495 (2014).

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for
large-scale sentiment classification: A deep learning approach. In Proceedings of
the 28th international conference on machine learning (ICML-11). 513-520.
Boqing Gong, Kristen Grauman, and Fei Sha. 2013. Connecting the dots with
landmarks: Discriminatively learning domain-invariant features for unsupervised
domain adaptation. In International Conference on Machine Learning. 222-230.
Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933-944.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631-642.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W.Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55-64.

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic query reformulations for text retrieval in
software engineering. In Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 842-851.

Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. 2018. Code
vectors: understanding programs through embedded abstracted symbolic traces.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. ACM,
163-174.

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011. Improving source code
search with natural language phrasal representations of method signatures. In
Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 524-527.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in neural information processing systems. 2042-2050.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension.
ACM, 200-210.

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 293-304.

[24

[25]

[26

[27

S
&

[29

[30

(31

[32

@
&

[34

[35

[36

w®
=

(38]

[39

[40

[41

[42

[43

(44

[45

=
&

[47

[48

[49

ICPC °20, October 5-6, 2020, Seoul, Republic of Korea

He Jiang, Liming Nie, Zeyi Sun, Zhilei Ren, Weigiang Kong, Tao Zhang, and Xiapu
Luo. 2016. ROSF: Leveraging information retrieval and supervised learning for
recommending code snippets. IEEE Transactions on Services Computing (2016).
Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code ex-
amples. In Proceedings of the 36th International Conference on Software Engineering.
ACM, 664-675.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

Otavio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and Cristina V Lopes.
2014. Thesaurus-based automatic query expansion for interface-driven code
search. In Proceedings of the 11th Working Conference on Mining Software Reposi-
tories. ACM, 212-221.

Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei.
2016. Relationship-aware code search for JavaScript frameworks. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 690-701.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial multi-task
learning for text classification. arXiv preprint arXiv:1704.05742 (2017).
Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. 2015. Learn-
ing transferable features with deep adaptation networks. arXiv preprint
arXiv:1502.02791 (2015).

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2016. Unsuper-
vised domain adaptation with residual transfer networks. In Advances in Neural
Information Processing Systems. 136—-144.

Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan. 2015. Query
expansion via wordnet for effective code search. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER). IEEE,
545-549.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. Codehow: Effective code search based on api understanding
and extended boolean model (e). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 260-270.

Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 111-120.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How can I use this method?. In Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE Press, 880-890.
Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
438-449.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. 2016. Query
expansion based on crowd knowledge for code search. IEEE Transactions on
Services Computing 9, 5 (2016), 771-783.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345-1359.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text matching as image recognition. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI 2793-2799.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532-1543. http://www.aclweb.org/anthology/D14-
1162

Barbara Plank, Anders Johannsen, and Anders Segaard. 2014. Importance weight-
ing and unsupervised domain adaptation of POS taggers: a negative result. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 968-973.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082 (2014).

Kyle Richardson and Jonas Kuhn. 2017. Function Assistant: A Tool for NL
Querying of APIs. arXiv preprint arXiv:1706.00468 (2017).

Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613-620.

Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. IBM Corp., 174-188.

Raphael Sirres, Tegawendé F Bissyandé, Dongsun Kim, David Lo, Jacques Klein,
Kisub Kim, and Yves Le Traon. 2018. Augmenting and structuring user queries



ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

to support efficient free-form code search. Empirical Software Engineering 23, 5
(2018), 2622-2654.

Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim.
2018. Active Inductive Logic Programming for Code Search. arXiv preprint
arXiv:1812.05265 (2018).

Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation 28, 1 (1972), 11-21.

Chuangqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. 2018. A survey on deep transfer learning. In International Conference
on Artificial Neural Networks. Springer, 270-279.

Yuan Tian, David Lo, and Julia Lawall. 2014. Automated construction of a
software-specific word similarity database. In 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE, 44-53.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Dong Wang and Thomas Fang Zheng. 2015. Transfer learning for speech and
language processing. In 2015 Asia-Pacific Signal and Information Processing Asso-
ciation Annual Summit and Conference (APSIPA). IEEE, 1225-1237.

Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie

[56] Shaowei Wang, David Lo, and Lingxiao Jiang. 2014. Active code search: incor-

porating user feedback to improve code search relevance. In Proceedings of the
29th ACM/IEEE international conference on Automated software engineering. ACM,
677-682.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
2017. End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 55-64.

Jinqiu Yang and Lin Tan. 2014. SWordNet: Inferring semantically related words
from software context. Empirical Software Engineering 19, 6 (2014), 1856-1886.
Zhilin Yang, Ruslan Salakhutdinov, and William W Cohen. 2017. Transfer learn-
ing for sequence tagging with hierarchical recurrent networks. arXiv preprint
arXiv:1703.06345 (2017).

Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word
embeddings to document similarities for improved information retrieval in soft-
ware engineering. In Proceedings of the 38th international conference on software
engineering. ACM, 404-415.



